Processing math: 0%

Blog TOÁN-TIN của Thầy CHÂU HỮU SƠN

Tui là Giáo viên Chuyên Toán Trung học. Hãy xem thêm:
Vườn Toán học
Cảm ơn các bạn đã ghé thăm blog!

Wednesday, March 2, 2016

On 7:26 AM by MATH CHANNEL in    1 comment
❄ COMPARING TWO FRACTIONS
To compare two fractions, we do as follows:
Way 1: Convert two fractions to the same denominator (review here) or numerator.
Way 2: Compare two fractions with suitable numbers (integers or fractions).
Note:
1) The fraction in which numerator and denominator have the same sign integers is greater than 0. A fraction greater than 0 is called a positive fraction. Conversely, the fraction in which numerator and denominator have the different sign integers is less than 0. A fraction less than 0 is called a negative fraction.
2) For a positive fraction (numerator and denominator have the same sign), if the numerator is greater than the denominator, the fraction is greater than 1 and conversely.
3) Of two positive fractions with the same numerator, the fraction with the smaller denominator is the larger fraction and conversely.
4) Given two fractions \dfrac{a}{b} and \dfrac{c}{d} (a, b, c, d \in \mathbb{N}^*, a < c, b > d) then \dfrac{a}{b} < \dfrac{c}{b} < \dfrac{c}{d}
5) When we just want to know if two fractions are equivalent, we apply the following property \dfrac{a}{b} = \dfrac{c}{d} \Leftrightarrow a.d = b.c
Example 1: Are the follwing pairs of fractions equivalent?
1) \dfrac{2}{3} and \dfrac{6}{9}
\dfrac{2}{3} = \dfrac{6}{9} since 2.9 = 3.6

2) \dfrac{{ - 3}}{4} and \dfrac{5}{{ - 7}}
\dfrac{{ - 3}}{4} \ne \dfrac{5}{{ - 7}} since ( - 3).( - 7) \ne 4.5

Example 2: Compare the following fractions:
1) \dfrac{14}{{21}} and \dfrac{ - 60}{{ - 72}}
\dfrac{{14}}{{21}} = \dfrac{{2}}{{3}}\dfrac{{ - 60}}{{ - 72}} = \dfrac{{5}}{{6}}
CD = 6
\dfrac{2}{3} = \dfrac{{2.2}}{{3.2}} = \dfrac{4}{6}
Since \dfrac{{4}}{{6}} < \dfrac{{ 5}}{6},
\dfrac{{14}}{{21}} < \dfrac{{ - 60}}{ - 72}

2) \dfrac{-2}{{7}} and \dfrac{24}{{-56}}
\dfrac{{24}}{{ - 56}} = \dfrac{{ - 3}}{{7}} (divide both the numerator and denominator by -8)
Since \dfrac{{-2}}{{7}} > \dfrac{{ - 3}}{7},
\dfrac{{-2}}{{7}} > \dfrac{{24}}{-56}

3) \dfrac{11033}{{15045}} and \dfrac{1111}{{1515}}
\dfrac{{11033}}{{15045}} = \dfrac{{11}}{{15}} (divide both the numerator and denominator by 1003)
\dfrac{{1111}}{{1515}} = \dfrac{{11}}{{15}} (divide both the numerator and denominator by 101)
So, \dfrac{{11033}}{{15045}} = \dfrac{{1111}}{{1515}}

4) \dfrac{141}{{893}} and \dfrac{159}{{901}}
\dfrac{{141}}{{893}} = \dfrac{3}{{19}}, \dfrac{{159}}{{901}} = \dfrac{3}{{17}}
Since \dfrac{{3}}{{19}} < \dfrac{{3}}{17},
\dfrac{{141}}{{893}} < \dfrac{{159}}{901}

5) \dfrac{ - 19}{{7}} and \dfrac{1}{{6}}
\dfrac{{ - 19}}{7} < 0 < \dfrac{1}{6}
\Rightarrow  \dfrac{{ - 19}}{7} < \dfrac{1}{6}

6) \dfrac{{79}}{{97}} and \dfrac{71}{{17}}
\dfrac{{79}}{97} < 1 < \dfrac{71}{17}
\Rightarrow  \dfrac{{79}}{97} < \dfrac{71}{17}

7) \dfrac{{37}}{{195}} and \dfrac{73}{{179}}
\dfrac{{37}}{{195}} < \dfrac{{73}}{{195}} < \dfrac{{73}}{{179}}
\Rightarrow \dfrac{{37}}{{195}} < \dfrac{{73}}{{179}}

8) \dfrac{{12}}{{29}} and \dfrac{16}{{41}}
\dfrac{{12}}{{29}} > \dfrac{{12}}{{30}} = \dfrac{2}{5} = \dfrac{{16}}{{40}} > \dfrac{{16}}{{41}}
\Rightarrow \dfrac{{12}}{{29}} > \dfrac{{16}}{{41}}

9) \dfrac{{22}}{{7}} and \dfrac{34}{{11}}
\dfrac{{22}}{7} = 3\dfrac{1}{7}\;\left( { = 3 + \dfrac{1}{7}} \right), \dfrac{{34}}{{11}} = 3\dfrac{1}{{11}}\;\left( { = 3 + \dfrac{1}{{11}}} \right)
Since \dfrac{{1}}{{7}} > \dfrac{{1}}{11},
\dfrac{{22}}{{7}} > \dfrac{{34}}{11}

1 comment: