Processing math: 100%

Blog TOÁN-TIN của Thầy CHÂU HỮU SƠN

Tui là Giáo viên Chuyên Toán Trung học. Hãy xem thêm:
Vườn Toán học
Cảm ơn các bạn đã ghé thăm blog!

Sunday, March 20, 2016

On 9:58 PM by MATH CHANNEL in    1 comment
 QUADRATIC EQUATION IN ONE VARIABLE
The standard form
{a{x^2} + bx + c = 0}
where x is unknown; a, b and c are real numbers with a \ne 0.
General quadratic equation
Calculate \Delta  = {b^2} - 4ac
\Delta  < 0  \Rightarrow the equation has no solution
\Delta  = 0  \Rightarrow the equation has a double solution: {x_{1,2}} = \dfrac{{ - b}}{{2a}}
\Delta  > 0  \Rightarrow the equation has two distinct solutions: {x_{1,2}} = \dfrac{{ - b \pm \sqrt \Delta  }}{{2a}}
+ In the cases when the coefficient b is an even number
* In special cases:
If b = 0 or c = 0, we convert the quadratic equation in to the product equation.
a + b + c = 0  \Rightarrow  {x_1} = 1{x_2} = \dfrac{c}{a}
a - b + c = 0  \Rightarrow  {x_1} = -1{x_2} = \dfrac{-c}{a}
Example. Solve the following equations:
1) {x^2} + 4x = 0
eqn \Leftrightarrow x\left( {x + 4} \right) = 0
\Leftrightarrow x = 0\;or\;x + 4 = 0
\Leftrightarrow x = 0\;or\;x = -4
The equation has two solutions x = 0,\;x =  -4.
2) {x^2} - 9 = 0
eqn \Leftrightarrow \left( {x - 3} \right)\left( {x + 3} \right) = 0
\Leftrightarrow x - 3 = 0\;or\;x + 3 = 0
\Leftrightarrow x = 3\;or\;x = -3
The equation has two solutions x = 3,\;x =  -3.
3) {x^2} +1 = 0
We have:
{x^2} \ge 0 for all x \in \mathbb{R}
\Rightarrow {x^2} + 1 \ge 1 > 0
Therefore, the equation has no solution.
4) {{x^2} - 5x + 6 = 0}
\left( {a = 1,\;b =  - 5,\;c = 6} \right)
\Delta  = {\left( { - 5} \right)^2} - 4.1.6 = 25 - 24 = 1 > 0
The equation has two distinct solutions:
{x_1} = \dfrac{{ - \left( { - 5} \right) - \sqrt 1 }}{{2.1}} = 2, {x_2} = \dfrac{{ - \left( { - 5} \right) + \sqrt 1 }}{{2.1}} = 3.
5) {x^2} - \sqrt 5 x + \dfrac{5}{4} = 0
\left( {a = 1,\;b =  - \sqrt 5 ,\;c = \dfrac{5}{4}} \right)
\Delta  = {\left( { - \sqrt 5 } \right)^2} - 4.1.\dfrac{5}{4} = 5 - 5 = 0
The equation has a double solution: x = \dfrac{{ - \left( { - \sqrt 5 } \right)}}{{2.1}} = \dfrac{{\sqrt 5 }}{2}.
6) {2{x^2} + 3x + 2 = 0}
\left( {a = 2,\;b =  3,\;c = 2} \right)
\Delta  = {3^2} - 4.2.2 = 9 - 16 =  - 7 < 0
The equation has no solution.
7) {{x^2} - 3x + 2 = 0}
\left( {a = 1,\;b =  -3,\;c = 2} \right)
The equation of the form a + b + c = 0
\Rightarrow The equation has two solutions {x_1} = 1{x_2} = \dfrac{2}{1} = 2
8) {{x^2} - 4x - 5 = 0}
\left( {a = 1,\;b =  -4,\;c = -5} \right)
The equation of the form a - b + c = 0
\Rightarrow  The equation has two solutions {x_1} = -1{x_2} = \dfrac{{ - \left( { - 5} \right)}}{1} = 5

1 comment: