Friday, March 4, 2016
On 5:41 AM by MATH CHANNEL in Grade 6 Math 1 comment
I. ADDITION OF FRACTIONS
❄ Adding two fractions with the same denominator $\boxed{\dfrac{a}{m} + \dfrac{b}{m} = \dfrac{{a + b}}{m}}$
❄ Adding two fractions with different denominators: We just convert fractions to the same denominator and applies the above rule.
Example: Calculate:
1) $\dfrac{3}{8} + \dfrac{5}{8} = \dfrac{{3 + 5}}{8} = \dfrac{8}{8} = 1$
2) $\dfrac{1}{7} + \dfrac{{ - 4}}{7} = \dfrac{{1 + ( - 4)}}{7} = \dfrac{{ - 3}}{7}$
3) $\dfrac{6}{{18}} + \dfrac{{ - 14}}{{21}} = \dfrac{1}{3} + \dfrac{{ - 2}}{3} = \dfrac{{1 + ( - 2)}}{3} = \dfrac{{ - 1}}{3}$
4) $\dfrac{{ - 2}}{3} + \dfrac{4}{{15}} = \dfrac{{ - 10}}{{15}} + \dfrac{4}{{15}} = \dfrac{{ - 6}}{{15}} = \dfrac{{ - 2}}{5}$
5) $\dfrac{{11}}{{15}} + \dfrac{9}{{ - 10}} = \dfrac{{11}}{{15}} + \dfrac{{ - 9}}{{10}} = \dfrac{{22}}{{30}} + \dfrac{{ - 27}}{{30}} = \dfrac{{ - 5}}{{30}} = \dfrac{{ - 1}}{6}$
6) $\dfrac{1}{{ - 7}} + 3 = \dfrac{{ - 1}}{7} + \dfrac{3}{1} = \dfrac{{ - 1}}{7} + \dfrac{{21}}{7} = \dfrac{{20}}{7}$
Similarly as the addition of intergers, the addition of fractions has the following fundamental properties:
a) Commutative property: $\dfrac{a}{b} + \dfrac{c}{d} = \dfrac{c}{d} + \dfrac{a}{b}$
b) Associative property: $\left( {\dfrac{a}{b} + \dfrac{c}{d}} \right) + \dfrac{p}{q} = \dfrac{a}{b} + \left( {\dfrac{c}{d} + \dfrac{p}{q}} \right)$
c) Adding to numer 0: $\dfrac{a}{b} + 0 = 0 + \dfrac{a}{b} = \dfrac{a}{b}$
❄ Adding two fractions with different denominators: We just convert fractions to the same denominator and applies the above rule.
Example: Calculate:
1) $\dfrac{3}{8} + \dfrac{5}{8} = \dfrac{{3 + 5}}{8} = \dfrac{8}{8} = 1$
2) $\dfrac{1}{7} + \dfrac{{ - 4}}{7} = \dfrac{{1 + ( - 4)}}{7} = \dfrac{{ - 3}}{7}$
3) $\dfrac{6}{{18}} + \dfrac{{ - 14}}{{21}} = \dfrac{1}{3} + \dfrac{{ - 2}}{3} = \dfrac{{1 + ( - 2)}}{3} = \dfrac{{ - 1}}{3}$
4) $\dfrac{{ - 2}}{3} + \dfrac{4}{{15}} = \dfrac{{ - 10}}{{15}} + \dfrac{4}{{15}} = \dfrac{{ - 6}}{{15}} = \dfrac{{ - 2}}{5}$
5) $\dfrac{{11}}{{15}} + \dfrac{9}{{ - 10}} = \dfrac{{11}}{{15}} + \dfrac{{ - 9}}{{10}} = \dfrac{{22}}{{30}} + \dfrac{{ - 27}}{{30}} = \dfrac{{ - 5}}{{30}} = \dfrac{{ - 1}}{6}$
6) $\dfrac{1}{{ - 7}} + 3 = \dfrac{{ - 1}}{7} + \dfrac{3}{1} = \dfrac{{ - 1}}{7} + \dfrac{{21}}{7} = \dfrac{{20}}{7}$
Similarly as the addition of intergers, the addition of fractions has the following fundamental properties:
a) Commutative property: $\dfrac{a}{b} + \dfrac{c}{d} = \dfrac{c}{d} + \dfrac{a}{b}$
b) Associative property: $\left( {\dfrac{a}{b} + \dfrac{c}{d}} \right) + \dfrac{p}{q} = \dfrac{a}{b} + \left( {\dfrac{c}{d} + \dfrac{p}{q}} \right)$
c) Adding to numer 0: $\dfrac{a}{b} + 0 = 0 + \dfrac{a}{b} = \dfrac{a}{b}$
II. SUBTRACTION OF FRACTIONS
Rule: $\boxed{\dfrac{a}{b} \color{red}{-} \dfrac{c}{d} = \dfrac{a}{b} \color{red}{+} \left( {\dfrac{{ - c}}{d}} \right)}$
Note: $\boxed{\dfrac{a}{{ - b}} = - \dfrac{a}{b} = \dfrac{{ - a}}{b}}$
Example: Calculate:1) $\dfrac{1}{8} - \dfrac{1}{2} = \dfrac{1}{8} + \dfrac{{ - 1}}{2} = \dfrac{1}{8} + \dfrac{{ - 4}}{8} = \dfrac{{ - 3}}{8}$
2) $\dfrac{{ - 5}}{7} - \dfrac{1}{3} = \dfrac{{ - 5}}{7} + \dfrac{{ - 1}}{3} = \dfrac{{ - 15}}{{21}} + \dfrac{{ - 7}}{{21}} = \dfrac{{ - 22}}{{21}}$
3) $\dfrac{3}{5} - \dfrac{{ - 1}}{2} = \dfrac{3}{5} + \dfrac{1}{2} = \dfrac{6}{{10}} + \dfrac{5}{{10}} = \dfrac{{11}}{{10}}$
4) $\dfrac{{ - 2}}{5} - \dfrac{{ - 3}}{4} = \dfrac{{ - 2}}{5} + \dfrac{3}{4} = \dfrac{{ - 8}}{{20}} + \dfrac{{15}}{{20}} = \dfrac{7}{{20}}$
5) $ - 5 - \dfrac{1}{6} = \dfrac{{ - 5}}{1} + \dfrac{{ - 1}}{6} = \dfrac{{ - 30}}{6} + \dfrac{{ - 1}}{6} = \dfrac{{ - 31}}{6}$
III. MULTIPLICATION OF FRACTIONS
Rule: $\boxed{\dfrac{a}{b} . \dfrac{c}{d} = \dfrac{{a . c}}{c . d}}$
Example: Calculate:
1) $\dfrac{{ - 3}}{7}.\dfrac{2}{{ - 5}} = \dfrac{{( - 3).2}}{{7.( - 5)}} = \dfrac{{ - 6}}{{ - 35}} = \dfrac{6}{{35}}$
2) $\dfrac{{ - 28}}{{33}}.\dfrac{{ - 3}}{4} = \dfrac{{( - 28).( - 3)}}{{33.4}} = \dfrac{{\color{red}{28}.\color{blue}{3}}}{{\color{blue}{33}.\color{red}{4}}} = \dfrac{{\color{red}{7}.\color{blue}{1}}}{{\color{blue}{11}.\color{red}{1}}} = \dfrac{7}{{11}}$
3) ${\left( {\dfrac{{ - 3}}{5}} \right)^2} = \dfrac{{ - 3}}{5}.\dfrac{{ - 3}}{5} = \dfrac{9}{{25}}$
4) ${\left( { - \dfrac{3}{2}} \right)^5} = \left( { - \dfrac{3}{2}} \right)\left( { - \dfrac{3}{2}} \right)\left( { - \dfrac{3}{2}} \right)\left( { - \dfrac{3}{2}} \right)\left( { - \dfrac{3}{2}} \right) = - \dfrac{{{3^5}}}{{{2^5}}} = - \dfrac{{243}}{{32}}$
5) $( - 2).\dfrac{{ - 3}}{7} = \dfrac{{( - 2).( - 3)}}{7} = \dfrac{6}{7}$ $\left(a.\dfrac{b}{c} \color{orange}{ = \dfrac{a}{1}.\dfrac{b}{c}} = \dfrac{{a.b}}{c}\right)$
6) $\dfrac{5}{{33}}.(-3) = \dfrac{{5.\color{red}{( - 3)}}}{\color{red}{33}} = \dfrac{{5.\color{red}{( - 1)}}}{\color{red}{11}} = \dfrac{{ - 5}}{{11}}$ $\left(\dfrac{a}{b}.c \color{orange}{ = \dfrac{a}{b}.\dfrac{c}{1}} = \dfrac{{a.c}}{b}\right)$
Similarly as the multiplication of intergers, the multiplication of fractions has the following fundamental properties:
a) Commutative property: $\dfrac{a}{b} . \dfrac{c}{d} = \dfrac{c}{d} . \dfrac{a}{b}$
b) Associative property: $\left( {\dfrac{a}{b} . \dfrac{c}{d}} \right) . \dfrac{p}{q} = \dfrac{a}{b} . \left( {\dfrac{c}{d} . \dfrac{p}{q}} \right)$
c) Multiplying by number 1: $\dfrac{a}{b} . 1 = 1 . \dfrac{a}{b} = \dfrac{a}{b}$
d) Distributive property of multiplication over addition: $\dfrac{a}{b}.\left( {\dfrac{c}{d} \pm \dfrac{p}{q}} \right) = \dfrac{a}{b}.\dfrac{c}{d} \pm \dfrac{a}{b}.\dfrac{p}{q}$
IV. DIVISION OF FRACTIONS
Rule: $\boxed{\dfrac{a}{b}:\dfrac{c}{d} = \dfrac{a}{b}.\dfrac{d}{c} = \dfrac{{a.d}}{{b.c}}\;\left( {c \ne 0} \right)}$
Example: Calculate:
1) $\dfrac{5}{6}:\dfrac{{ - 7}}{{12}} = \dfrac{5}{6}.\dfrac{{ - 12}}{7} = \dfrac{5}{1}.\dfrac{{ - 2}}{7} = \dfrac{{ - 10}}{7}$
2) $ - 7:\dfrac{{14}}{3} = - 7.\dfrac{3}{{14}} = \dfrac{{ - 3}}{2}$
3) $\dfrac{{ - 3}}{7}:9 = \dfrac{{ - 3}}{7}.\dfrac{1}{9} = \dfrac{{ - 1}}{7}.\dfrac{1}{3} = \dfrac{{ - 1}}{{21}}$
Subscribe to:
Post Comments (Atom)
Search
Popular Posts
-
SƠ ĐỒ NHẬN BIẾT CÁC LOẠI TỨ GIÁC DẤU HIỆU NHẬN BIẾT CÁC HÌNH Hình thang cân 1. Hình thang có hai góc kề một đáy bằng nhau là hìn...
-
SƠ ĐỒ NHẬN BIẾT CÁC LOẠI TAM GIÁC DẤU HIỆU NHẬN BIẾT CÁC HÌNH Tam giác cân 1. Tam giác có hai cạnh bằng nhau là tam giác cân....
-
$\boxed{\text {Bổ đề hình thang: }}$ Trong hình thang hai đáy không bằng nhau, giao điểm của hai đường thẳng chứa hai cạnh bên, giao điể...
-
$\boxed{\text {Bài toán 1: }}$ (Đề thi HKII 2008-2009 Q11 TpHCM) Cho tam giác ABC có các góc đều nhọn và có ba đường cao là AD, BE, CF c...
-
$\boxed{\text {Bài toán: }}$ Cho O, H, G lần lượt là tâm đường tròn ngoại tiếp, trực tâm, trọng tâm của $\triangle$ ABC. Chứng minh rằng...
-
Để tìm ƯCLN, BCNN của các số tự nhiên, người ta thường dùng những cách sau: Cách 1 : Phân tích các số ra thừa số nguyên tố Vd: Tìm ƯC...
-
Bạn cần download tài liệu, ebook,... phục vụ cho việc học tập nghiên cứu từ các trang Scribd, Issuu, Slideshare và Academia một cách nhanh...
-
Chương trình Tìm Ước chung lớn nhất và Bội chung nhỏ nhất của một dãy các số tự nhiên import java.util.Scanner; public class Main ...
-
Chương trình chuyển đổi một số tự nhiên ở hệ thập phân thành số ở hệ nhị phân, bát phân, thập lục phân và hệ cơ số bất kì import java.u...
-
Dãy số Fibonacci được định nghĩa như sau: F[0] =1, F[1] = 1; F[n] = F[n-1] + F[n-2] với n>=2. Hãy viết chương trình tìm số Fibonacci thứ ...
Recent Posts
Categories
- Công nghệ thông tin
- Đại số 10
- Đại số 7
- Đại số 8
- Đại số 9
- Đề thi Toán 6
- Đề thi Toán 7
- Đề thi Toán 8
- Đề thi Toán 9
- Đố Toán
- Grade 6 Math
- Grade 8 Math
- Grade 9 Math
- Hình học 6
- Hình học 7
- Hình học 8
- Hình học 9
- Khác
- Lập trình Java cơ bản
- Math Puzzles
- Mathematical game
- Phương pháp học Toán
- Số học 6
- Số và Đại số 6
- Toán tham khảo 6
- Toán tham khảo 8
- Toán tham khảo 9
- Toán thực tế
- Toán và cuộc sống
Blog Archive
-
▼
2016
(91)
-
▼
March
(27)
- ĐỀ THI TOÁN 6 HỌC KÌ II NĂM HỌC 2015$-$2016 QUẬN 1...
- [Arithmetic 6] Ratio of two numbers
- [SỐ HỌC 6] TỈ SỐ CỦA HAI SỐ
- [Algebra 9] Advanced exercises
- ĐỀ THI TOÁN 6 HỌC KÌ II NĂM HỌC 2014$-$2015 QUẬN 1...
- ĐỀ THI TOÁN 6 HỌC KÌ II NĂM HỌC 2013$-$2014 QUẬN 1...
- ĐỀ THI TOÁN 6 HỌC KÌ II NĂM HỌC 2011$-$2012 QUẬN 1...
- ĐỀ THI TOÁN 6 HỌC KÌ II NĂM HỌC 2010$-$2011 QUẬN 1...
- ĐỀ THI TOÁN 6 HỌC KÌ II NĂM HỌC 2009$-$2010 QUẬN 1...
- ĐỀ THI TOÁN 6 HỌC KÌ II NĂM HỌC 2008$-$2009 QUẬN 1...
- [Algebra 9] Quadratic equation in one variable
- ĐỀ THI TUYỂN SINH LỚP 10 THPT TPHCM NĂM HỌC 1990$-...
- ĐỀ THI TOÁN 9 HỌC KÌ II NĂM HỌC 2014$-$2015 QUẬN 1...
- ĐỀ THI TOÁN 9 HỌC KÌ II NĂM HỌC 2013$-$2014 QUẬN 1...
- ĐỀ THI TOÁN 9 HỌC KÌ II NĂM HỌC 2012$-$2013 QUẬN 1...
- ĐỀ THI TOÁN 9 HỌC KÌ II NĂM HỌC 2011$-$2012 QUẬN 1...
- [ĐỀ THI TOÁN 9 HỌC KÌ II NĂM HỌC 2010$-$2011 QUẬN ...
- ĐỀ THI TOÁN 9 HỌC KÌ II NĂM HỌC 2009$-$2010 QUẬN 1...
- ĐỀ THI TOÁN 9 HỌC KÌ II NĂM HỌC 2008$-$2009 QUẬN 1...
- [HÌNH HỌC 9] BÀI TẬP TỔNG HỢP HKII (010)
- [ĐẠI SỐ 10] MỆNH ĐỀ
- Vài kinh nghiệm giải toán
- [Algebra 9] System of two linear equations in two ...
- [HÌNH HỌC 9] CÁC BÀI TOÁN TỔNG HỢP HỌC KÌ I
- [Arithmetic 6] Mixed numbers. Decimals. Percentages
- [Arithmetic 6] Operations of addition, subtraction...
- [Arithmetic 6] Comparing fractions
-
▼
March
(27)
My Fanpage
Số lượt xem
Hỗ Trợ Trực Tuyến
Vườn Toán - Tin học. Powered by Blogger.
Dạng toán này rất hay thường gặp, cảm ơn thầy giáo đã chia sẻ
ReplyDelete