Saturday, June 4, 2016
On 5:41 AM by MATH CHANNEL in Đề thi Toán 9 1 comment
ĐỀ THI TUYỂN SINH LỚP 10 THPT TPHCM NĂM HỌC 2013$-$2014
Bài 1. Giải các phương trình và hệ phương
trình sau:
a) ${x^2} - 5x + 6 = 0$
b) ${x^2} - 2x - 1 = 0$
c) ${x^4} + 3{x^2} - 4 = 0$
d) $\begin{cases}2x - y = 3\\x + 2y = -1\end{cases}$
a) Vẽ đồ thị (P)
của hàm số $y = {x^2}$ và đường thẳng (D): $y = - x + 2$ trên cùng một hệ trục
tọa độ.
b) Tìm tọa độ
các giao điểm của (P) và (D) ở câu trên bằng phép tính.
Bài 3. Thu gọn các biểu thức sau:
$A = \left( {\dfrac{{\sqrt x }}{{\sqrt x + 3}} + \dfrac{3}{{\sqrt x - 3}}} \right).\dfrac{{\sqrt x + 3}}{{x + 9}}$ với x $\ge$ 0, x $\ne$ 9$B = 21{\left( {\sqrt {2 + \sqrt 3 } + \sqrt {3 - \sqrt 5 } } \right)^2} - 6{\left( {\sqrt {2 - \sqrt 3 } + \sqrt {3 + \sqrt 5 } } \right)^2} - 15\sqrt {15} $
Bài 4. Cho phương trình $8{x^2} - 8x + {m^2} + 1 = 0$ (*) (x là ẩn số)
a) Định m để phương
trình (*) có nghiệm $x = \dfrac{1}{2}$.
b) Định m để phương
trình (*) có hai nghiệm $x_1$, $x_2$ thỏa điều kiện: $x_1^4 - x_2^4 = x_1^3 - x_2^3$
Bài 5. Cho tam giác ABC không có góc tù (AB
< AC), nội tiếp đường tròn (O; R) (B, C cố định, A di động trên cung lớn
BC). Các tiếp tuyến tại B và C cắt nhau tại M. Từ M kẻ đường thẳng song song với
AB, đường thẳng này cắt (O) tại D và E (D thuộc cung nhỏ BC), cắt BC tại F, cắt
AC tại I.
a) Chứng minh rằng: $\widehat {MBC} = \widehat {BAC}$. Từ đó suy ra MBIC là tứ giác nội tiếp.
b) Chứng minh rằng: FI.FM = FD.FE .
c) Đường thẳng
OI cắt (O) tại P và Q (P thuộc cung nhỏ AB). Đường thẳng QF cắt (O) tại T (T
khác Q). Chứng minh ba điểm P, T, M thẳng hàng.
d) Tìm vị trí điểm A trên cung lớn BC sao cho tam giác
IBC có diện tích lớn nhất.
Subscribe to:
Post Comments (Atom)
Search
Popular Posts
-
SƠ ĐỒ NHẬN BIẾT CÁC LOẠI TỨ GIÁC DẤU HIỆU NHẬN BIẾT CÁC HÌNH Hình thang cân 1. Hình thang có hai góc kề một đáy bằng nhau là hìn...
-
SƠ ĐỒ NHẬN BIẾT CÁC LOẠI TAM GIÁC DẤU HIỆU NHẬN BIẾT CÁC HÌNH Tam giác cân 1. Tam giác có hai cạnh bằng nhau là tam giác cân....
-
$\boxed{\text {Bổ đề hình thang: }}$ Trong hình thang hai đáy không bằng nhau, giao điểm của hai đường thẳng chứa hai cạnh bên, giao điể...
-
$\boxed{\text {Bài toán 1: }}$ (Đề thi HKII 2008-2009 Q11 TpHCM) Cho tam giác ABC có các góc đều nhọn và có ba đường cao là AD, BE, CF c...
-
$\boxed{\text {Bài toán: }}$ Cho O, H, G lần lượt là tâm đường tròn ngoại tiếp, trực tâm, trọng tâm của $\triangle$ ABC. Chứng minh rằng...
-
Để tìm ƯCLN, BCNN của các số tự nhiên, người ta thường dùng những cách sau: Cách 1 : Phân tích các số ra thừa số nguyên tố Vd: Tìm ƯC...
-
Bạn cần download tài liệu, ebook,... phục vụ cho việc học tập nghiên cứu từ các trang Scribd, Issuu, Slideshare và Academia một cách nhanh...
-
Chương trình Tìm Ước chung lớn nhất và Bội chung nhỏ nhất của một dãy các số tự nhiên import java.util.Scanner; public class Main ...
-
Chương trình chuyển đổi một số tự nhiên ở hệ thập phân thành số ở hệ nhị phân, bát phân, thập lục phân và hệ cơ số bất kì import java.u...
-
Dãy số Fibonacci được định nghĩa như sau: F[0] =1, F[1] = 1; F[n] = F[n-1] + F[n-2] với n>=2. Hãy viết chương trình tìm số Fibonacci thứ ...
Recent Posts
Categories
- Công nghệ thông tin
- Đại số 10
- Đại số 7
- Đại số 8
- Đại số 9
- Đề thi Toán 6
- Đề thi Toán 7
- Đề thi Toán 8
- Đề thi Toán 9
- Đố Toán
- Grade 6 Math
- Grade 8 Math
- Grade 9 Math
- Hình học 6
- Hình học 7
- Hình học 8
- Hình học 9
- Khác
- Lập trình Java cơ bản
- Math Puzzles
- Mathematical game
- Phương pháp học Toán
- Số học 6
- Số và Đại số 6
- Toán tham khảo 6
- Toán tham khảo 8
- Toán tham khảo 9
- Toán thực tế
- Toán và cuộc sống
Blog Archive
-
▼
2016
(91)
-
▼
June
(10)
- [SỐ HỌC 6] TOÁN NÂNG CAO VỀ SỐ TỰ NHIÊN
- ĐỀ THI TUYỂN SINH LỚP 10 THPT TPHCM NĂM HỌC 2016$-...
- [SỐ HỌC 6] TẬP HỢP - PHẦN TỬ CỦA TẬP HỢP
- [HÌNH HỌC 9] ĐƯỜNG THẲNG EULER
- ĐỀ THI TUYỂN SINH LỚP 10 THPT TPHCM NĂM HỌC 2015$-...
- [HÌNH HỌC 8] BỔ ĐỀ HÌNH THANG
- ĐỀ THI TUYỂN SINH LỚP 10 THPT TPHCM NĂM HỌC 2014$-...
- [HÌNH HỌC 8] TÓM TẮT CHƯƠNG TAM GIÁC ĐỒNG DẠNG
- ĐỀ THI TUYỂN SINH LỚP 10 THPT TPHCM NĂM HỌC 2013$-...
- ĐỀ THI TUYỂN SINH LỚP 10 THPT TPHCM NĂM HỌC 2012$-...
-
▼
June
(10)
My Fanpage
Số lượt xem
Hỗ Trợ Trực Tuyến
Vườn Toán - Tin học. Powered by Blogger.
Đề thi này rất sát thực tế, các em học sinh nên tham khảo
ReplyDelete