Saturday, December 26, 2015
On 9:26 PM by MATH CHANNEL in Toán tham khảo 8 2 comments
Bạn
có thể tùy ý chọn 4 số tự nhiên liên tiếp, sau khi nhân chúng với nhau, cộng
thêm 1 vào tích đó, khi đó ta không cần biết kết quả là bao nhiêu, nhưng có thể
chắc chắn rằng đó là một số chính phương.
Hãy
xem ví dụ dưới đây:$1 \times 2 \times 3 \times 4 + 1 = 25 = {5^2}$
$2 \times 3 \times 4 \times 5 + 1 = 121 = {11^2}$
$3 \times 4 \times 5 \times 6 + 1 = 361 = {19^2}$
$4 \times 5 \times 6 \times 7 + 1 = 841 = {29^2}$
...............................................................................
Càng
về sau, việc tính toán càng phức tạp, nhưng dù sao chăng nữa ta có thể khẳng định,
kết quả là một số chính phương.
Vì sao lại có được kết quả như vậy?
Trong
bốn số tự nhiên liên tiếp, giả thiết số nhỏ nhất là $a$ ta sẽ nghiên cứu xem biểu
thức sau có là số chính phương không?
$a\left( {a + 1} \right)\left( {a + 2} \right)\left( {a + 3} \right) + 1$
$= a\left( {a + 3} \right)\left( {a + 1} \right)\left( {a + 2} \right) + 1$
$= \left( {{a^2} + 3a} \right)\left( {{a^2} + 3a + 2} \right) + 1$
$= {\left( {{a^2} + 3a} \right)^2} + 2\left( {{a^2} + 3a} \right) + 1$
$= {\left( {{a^2} + 3a + 1} \right)^2}$
Thực vậy, $a$ là một số tự nhiên nên ${\left( {{a^2} + 3a + 1} \right)^2}$ là một số
chính phương.
Thông qua phân tích trên, ta không chỉ biết được $a(a + 1)(a + 2)(a + 3) + 1$ là một số chính phương mà còn có thể rất nhanh chóng
tính ra được nó là bình phương của số nào.
Ví dụ $10 \times 11 \times 12 \times 13 + 1 = ?$ Trong phép tính này, số nhỏ nhất là $a = 10$, vậy ${\left( {{a^2} + 3a + 1} \right)^2} = 131$. Tức là $10 \times 11 \times 12 \times 13 + 1 = {131^2}$
Bạn có thể thử với các số: $15 \times 16 \times 17 \times 18 + 1 = ?$
Subscribe to:
Post Comments (Atom)
Search
Popular Posts
-
SƠ ĐỒ NHẬN BIẾT CÁC LOẠI TỨ GIÁC DẤU HIỆU NHẬN BIẾT CÁC HÌNH Hình thang cân 1. Hình thang có hai góc kề một đáy bằng nhau là hìn...
-
$\boxed{\text {Bổ đề hình thang: }}$ Trong hình thang hai đáy không bằng nhau, giao điểm của hai đường thẳng chứa hai cạnh bên, giao điể...
-
SƠ ĐỒ NHẬN BIẾT CÁC LOẠI TAM GIÁC DẤU HIỆU NHẬN BIẾT CÁC HÌNH Tam giác cân 1. Tam giác có hai cạnh bằng nhau là tam giác cân....
-
$\boxed{\text {Bài toán 1: }}$ (Đề thi HKII 2008-2009 Q11 TpHCM) Cho tam giác ABC có các góc đều nhọn và có ba đường cao là AD, BE, CF c...
-
$\boxed{\text {Bài toán: }}$ Cho O, H, G lần lượt là tâm đường tròn ngoại tiếp, trực tâm, trọng tâm của $\triangle$ ABC. Chứng minh rằng...
-
Để tìm ƯCLN, BCNN của các số tự nhiên, người ta thường dùng những cách sau: Cách 1 : Phân tích các số ra thừa số nguyên tố Vd: Tìm ƯC...
-
Bạn cần download tài liệu, ebook,... phục vụ cho việc học tập nghiên cứu từ các trang Scribd, Issuu, Slideshare và Academia một cách nhanh...
-
Chương trình Tìm Ước chung lớn nhất và Bội chung nhỏ nhất của một dãy các số tự nhiên import java.util.Scanner; public class Main ...
-
Chương trình chuyển đổi một số tự nhiên ở hệ thập phân thành số ở hệ nhị phân, bát phân, thập lục phân và hệ cơ số bất kì import java.u...
-
Dãy số Fibonacci được định nghĩa như sau: F[0] =1, F[1] = 1; F[n] = F[n-1] + F[n-2] với n>=2. Hãy viết chương trình tìm số Fibonacci thứ ...
Recent Posts
Categories
- Công nghệ thông tin
- Đại số 10
- Đại số 7
- Đại số 8
- Đại số 9
- Đề thi Toán 6
- Đề thi Toán 7
- Đề thi Toán 8
- Đề thi Toán 9
- Đố Toán
- Grade 6 Math
- Grade 8 Math
- Grade 9 Math
- Hình học 6
- Hình học 7
- Hình học 8
- Hình học 9
- Khác
- Lập trình Java cơ bản
- Math Puzzles
- Mathematical game
- Phương pháp học Toán
- Số học 6
- Số và Đại số 6
- Toán tham khảo 6
- Toán tham khảo 8
- Toán tham khảo 9
- Toán thực tế
- Toán và cuộc sống
Blog Archive
-
▼
2015
(17)
-
▼
December
(17)
- [HÌNH HỌC 7] DẤU HIỆU NHẬN BIẾT CÁC TAM GIÁC ĐẶC BIỆT
- [ĐẠI SỐ 9] PHƯƠNG TRÌNH QUI VỀ PHƯƠNG TRÌNH BẬC HA...
- Vì sao thêm 1 vào tích của bốn số tự nhiên liên ti...
- [ĐẠI SỐ 9] PHƯƠNG TRÌNH BẬC HAI MỘT ẨN
- Thuật toán Tìm số Fibonacci thứ n trong Java
- Câu chuyện về phép chia công bằng
- [ĐẠI SỐ 9] HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN
- Quan niệm về vấn đề Rèn luyện giải toán
- Thuật toán Liệt kê n số nguyên tố đầu tiên trong Java
- Thuật toán Liệt kê tất cả các số nguyên tố nhỏ hơn...
- Thuật toán Phân tích một số nguyên dương thành các...
- Thuật toán Tính tổng các chữ số của một số tự nhiê...
- Thuật toán Đổi cơ số trong Java
- Tờ giấy nháp
- [HÌNH HỌC 8] DẤU HIỆU NHẬN BIẾT CÁC TỨ GIÁC ĐẶC BIỆT
- [SỐ HỌC 6] ƯỚC CHUNG LỚN NHẤT - BỘI CHUNG NHỎ NHẤT
- Thuật toán Tìm Ước chung lớn nhất và Bội chung nhỏ...
-
▼
December
(17)
My Fanpage
Số lượt xem
Hỗ Trợ Trực Tuyến
Vườn Toán - Tin học. Powered by Blogger.
Nội dung này rất hữu ích, nhất là các em học chuyên toán
ReplyDeleteCảm ơn bài viết cảu bạn, bài viết rất chi tiết, chỉ bảo rất cụ thế, mời các bạn tham khảo các thông tin của bài viết Bọc răng sứ chữa răng hô là như thế nào ?
ReplyDelete