Friday, December 11, 2015
On 6:35 AM by MATH CHANNEL in Lập trình Java cơ bản 2 comments
Chương trình tính tổng các chữ số của một số tự nhiên bất kì
import java.util.Scanner;
public class Main {
public static int nhapSoTN() {
Scanner
input = new Scanner(System.in);
boolean check = false;
int n = 0;
while (!check) {
try {
n = Integer.parseInt(input.nextLine());
if (n < 0) {
System.out.println("Bạn phải
nhập số tự nhiên! Hãy nhập lại.");
continue;
}
check = true;
}
catch (Exception e) {
System.out.println("Bạn phải
nhập số tự nhiên! Hãy nhập lại.");
}
}
return (n);
}
public static int tongChuSo(int n) {
int sum = 0;
int du;
while (n != 0) {
du = n % 10;
sum += du;
n /= 10;
}
return sum;
}
public static int tongChuSo(int n) {
String
str = Integer.toString(n);
int sum = 0;
for (int i = 0; i < str.length(); i++) {
sum += (int) str.charAt(i) - 48; // 48 la mã Ascii của 0
}
return sum;
}
public static void main(String[] args) {
System.out.println("Nhập số tự
nhiên n: ");
int n = nhapSoTN();
System.out.println("Tổng các chữ
số bằng: " + tongChuSo(n));
}
Subscribe to:
Post Comments (Atom)
Search
Popular Posts
-
SƠ ĐỒ NHẬN BIẾT CÁC LOẠI TỨ GIÁC DẤU HIỆU NHẬN BIẾT CÁC HÌNH Hình thang cân 1. Hình thang có hai góc kề một đáy bằng nhau là hìn...
-
$\boxed{\text {Bổ đề hình thang: }}$ Trong hình thang hai đáy không bằng nhau, giao điểm của hai đường thẳng chứa hai cạnh bên, giao điể...
-
SƠ ĐỒ NHẬN BIẾT CÁC LOẠI TAM GIÁC DẤU HIỆU NHẬN BIẾT CÁC HÌNH Tam giác cân 1. Tam giác có hai cạnh bằng nhau là tam giác cân....
-
$\boxed{\text {Bài toán 1: }}$ (Đề thi HKII 2008-2009 Q11 TpHCM) Cho tam giác ABC có các góc đều nhọn và có ba đường cao là AD, BE, CF c...
-
$\boxed{\text {Bài toán: }}$ Cho O, H, G lần lượt là tâm đường tròn ngoại tiếp, trực tâm, trọng tâm của $\triangle$ ABC. Chứng minh rằng...
-
Để tìm ƯCLN, BCNN của các số tự nhiên, người ta thường dùng những cách sau: Cách 1 : Phân tích các số ra thừa số nguyên tố Vd: Tìm ƯC...
-
Bạn cần download tài liệu, ebook,... phục vụ cho việc học tập nghiên cứu từ các trang Scribd, Issuu, Slideshare và Academia một cách nhanh...
-
Chương trình Tìm Ước chung lớn nhất và Bội chung nhỏ nhất của một dãy các số tự nhiên import java.util.Scanner; public class Main ...
-
Chương trình chuyển đổi một số tự nhiên ở hệ thập phân thành số ở hệ nhị phân, bát phân, thập lục phân và hệ cơ số bất kì import java.u...
-
Dãy số Fibonacci được định nghĩa như sau: F[0] =1, F[1] = 1; F[n] = F[n-1] + F[n-2] với n>=2. Hãy viết chương trình tìm số Fibonacci thứ ...
Recent Posts
Categories
- Công nghệ thông tin
- Đại số 10
- Đại số 7
- Đại số 8
- Đại số 9
- Đề thi Toán 6
- Đề thi Toán 7
- Đề thi Toán 8
- Đề thi Toán 9
- Đố Toán
- Grade 6 Math
- Grade 8 Math
- Grade 9 Math
- Hình học 6
- Hình học 7
- Hình học 8
- Hình học 9
- Khác
- Lập trình Java cơ bản
- Math Puzzles
- Mathematical game
- Phương pháp học Toán
- Số học 6
- Số và Đại số 6
- Toán tham khảo 6
- Toán tham khảo 8
- Toán tham khảo 9
- Toán thực tế
- Toán và cuộc sống
Blog Archive
-
▼
2015
(17)
-
▼
December
(17)
- [HÌNH HỌC 7] DẤU HIỆU NHẬN BIẾT CÁC TAM GIÁC ĐẶC BIỆT
- [ĐẠI SỐ 9] PHƯƠNG TRÌNH QUI VỀ PHƯƠNG TRÌNH BẬC HA...
- Vì sao thêm 1 vào tích của bốn số tự nhiên liên ti...
- [ĐẠI SỐ 9] PHƯƠNG TRÌNH BẬC HAI MỘT ẨN
- Thuật toán Tìm số Fibonacci thứ n trong Java
- Câu chuyện về phép chia công bằng
- [ĐẠI SỐ 9] HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN
- Quan niệm về vấn đề Rèn luyện giải toán
- Thuật toán Liệt kê n số nguyên tố đầu tiên trong Java
- Thuật toán Liệt kê tất cả các số nguyên tố nhỏ hơn...
- Thuật toán Phân tích một số nguyên dương thành các...
- Thuật toán Tính tổng các chữ số của một số tự nhiê...
- Thuật toán Đổi cơ số trong Java
- Tờ giấy nháp
- [HÌNH HỌC 8] DẤU HIỆU NHẬN BIẾT CÁC TỨ GIÁC ĐẶC BIỆT
- [SỐ HỌC 6] ƯỚC CHUNG LỚN NHẤT - BỘI CHUNG NHỎ NHẤT
- Thuật toán Tìm Ước chung lớn nhất và Bội chung nhỏ...
-
▼
December
(17)
My Fanpage
Số lượt xem
Hỗ Trợ Trực Tuyến
Vườn Toán - Tin học. Powered by Blogger.
Cám ơn thầy đã đăng đoạn chương trình. nếu có những đoạn comment trong code sẽ tốt hơn rất nhiều
ReplyDeleteNội dung này rất hữu ích, cảm ơn tác giả
ReplyDelete