Blog TOÁN-TIN của Thầy CHÂU HỮU SƠN

Tui là Giáo viên Chuyên Toán Trung học. Hãy xem thêm:
Vườn Toán học
Cảm ơn các bạn đã ghé thăm blog!

Friday, March 13, 2020

On 5:27 AM by MATH CHANNEL in    2 comments
ĐỀ THI TUYỂN SINH LỚP 10 THPT TPHCM NĂM HỌC 2017$-$2018

Bài 1. Giải các phương trình và hệ phương trình sau:
a) Giải phương trình: $x^2  = \left( {x - 1} \right)\left( {3x - 2} \right)$
b) Một miếng đất hình chữ nhật có chu vi 100m. Tính chiều dài và chiều rộng của miếng đất, biết rằng 5 lần chiều rộng hơn 2 lần chiều dài 40m.

Bài 2.
Trong mặt phẳng tọa độ Oxy:
a) Vẽ đồ thị (P) của hàm số $y = \dfrac{1}{4}x^2 $.
b) Cho đường thẳng (D): $y = \dfrac{3}{2}x + m$ đi qua điểm C(6; 7). Tìm tọa độ giao điểm của (D) và (P).

1) Thu gọn biểu thức sau: $A = \left( {\sqrt 3  + 1} \right)\sqrt {\dfrac{{14 - 6\sqrt 3 }}{{5 + \sqrt 3 }}} $
2) Lúc 6 giờ sáng, bạn An đi xe đạp từ nhà (điểm A) đến trường (điểm B) phải leo lên và xuống một con dốc (như hình vẽ bên dưới). Cho biết đoạn thẳng AB dài 762m, $\widehat A = 6^0 $,  $\widehat B = 4^0 $.
a) Tính chiều cao h của con dốc.
b) Hỏi bạn An đến trường lúc mấy giờ? Biết rằng tốc độ trung bình lên dốc là 4 km/h và tốc độ trung bình xuống dốc là 19 km/h.

Bài 4. Cho phương trình: $x^2  - \left( {2m - 1} \right)x + m^2  - 1 = 0$ (1) (x là ẩn số)
a) Tìm điều kiện của m để phương trình (1) có hai nghiệm phân biệt.
b) Định m để hai nghiệm $x_1$, $x_2$ của phương trình (1) thỏa mãn:
$\left( {x_1  - x_2 } \right)^2  = x_1  - 3x_2 $

Bài 5. Cho tam giác ABC vuông tại A. Đường tròn tâm O đường kính AB cắt các đoạn BC và OC lần lượt tại D và I. Gọi H là hình chiếu của A lên OC; AH cắt BC tại M.
a) Chứng minh: Tứ giác ACDH nội tiếp và $\widehat {CHD} = \widehat {ABC}$.
b) Chứng minh: Hai tam giác OHB và OBC đồng dạng với nhau và HM là tia phân giác của góc BHD.
c) Gọi K là trung điểm của BD. Chứng minh: MD.BC = MB.CD và MB.MD = MK.MC.
d) Gọi E là giao điểm của AM và OK; J là giao điểm của IM và (O) (J khác I). Chứng minh: Hai đường thẳng OC và EJ cắt nhau tại một điểm nằm trên (O).

2 comments:

  1. Các bạn trẻ đang học lớp 9 cần làm thử những đề thi như thế này

    ReplyDelete
  2. Đề thi này rất sát thực tế, các em nên tham khảo

    ReplyDelete